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Introduction

In the supplementary material, we present a supplementary video and the fol-
lowing additional material:

1. Cross-view examples and failure cases from the single-view pipeline
2. Application of our pipeline to other bird species
3. An assessment of the performance of Mask R-CNN on various dataset splits
4. Ablation experiments and additional evaluations
5. A comparison of our dataset with other animal datasets
6. Statistics for mask and keypoint annotations in our dataset.

1 Cross-view examples and failure cases produced by the
single-view pipeline

Our single-view pipeline produces poses that are consistent across views (Table 2
in the main paper). In Figure S1 we present visual examples of meshes projected
onto views that were not used to obtain the mesh. The distributions of pose
and shape obtained from multi-view optimization provide a sufficient prior for
single-view pose estimation.

The keypoint detector sometimes fails completely for difficult poses (Fig-
ure S2, top row) or swaps left and right keypoints (bottom row), which cause a
faulty prediction by the pose regression network. Sixty percent of failure cases
were associated with bad keypoint detection. Even in cases with very few key-
points, however, the pipeline produces meshes that are consistent with the sil-
houette.

2 Application to other bird species in CUB-200

We also predict pose and shape for several other bird species (Figure S3). We an-
notated our set of keypoints (see main text) on several examples from CUB-200
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Fig. S1. Three examples of single-view fits (source views) visualized from additional
views that were not used to obtain the mesh (cross-view examples).

Fig. S2. Failure cases from the full pipeline. From left to right, each panel shows the
input image, predicted keypoints, predicted mask, regressed mesh, and refined mesh.
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and input the mask and keypoints into our single-view pipeline, starting at the
pose and shape regression networks. The pose regression networks and bone
length formulation of shape variation allow successful fits on several similar
species.

Fig. S3. Our mesh, pose regression networks, and single-view optimization procedure
generalize to similar bird species in CUB-200 using distributions of shape and pose
extracted from our multi-view dataset.

3 Performance of Mask R-CNN

Here we evaluate the performance of Mask R-CNN on instance segmentation of
birds on additional splits of the dataset. We train and test on datasets split 1)
randomly by moment, where each set of images from the eight camera views is
randomly assigned to train/test, 2) randomly by day, where all samples from
a given recording day are—together—assigned randomly to train/test, 3) by
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the time of day, where we train/test on data before noon and test/train on data
after noon, and 4) by season, where we train/test on data from the spring (March
and April) and test/train on data from the summer (May and June) (Table S1).
Performance was generally highest when data was split by moment, the most
granular split.

Table S1. Average precision of Mask R-CNN predictions from 50% to 95% IoU (AP),
precision at 50% and 75% IoU (AP50 and AP75, respectively), and average precision
across small (0 − 322 pixels), medium (322 − 962 pixels), and large (over 962 pixels)
annotations (APs, APm, and APl, respectively) in the multi-view setting. Given the
size categories above, 33% of annotations were small, 59% were medium, and 8% were
large. The training set is indicated by “tr.” if applicable.

Split Num. train Num. test AP AP50 AP75 APs APm APl

by moment 695 215 0.59 0.89 0.70 0.38 0.64 0.80
by day 595 315 0.53 0.82 0.62 0.35 0.58 0.71
by time of day (tr. AM) 486 424 0.58 0.90 0.68 0.38 0.64 0.80
by time of day (tr. PM) 424 486 0.54 0.86 0.63 0.41 0.59 0.72
by season (tr. spring) 427 483 0.58 0.91 0.69 0.42 0.63 0.79
by season (tr. summer) 483 427 0.52 0.81 0.60 0.35 0.58 0.73

4 Ablation experiments and additional evaluations

Single-view pipeline. Here we extend our evaluation of our single-view pipeline
(Table 3 in the main paper) by replacing keypoint and mask network predictions
with ground truth annotations. Using ground truth annotations, pose regression
followed by optimization produces high quality fits with PCK@10 ¿ 0.96 (Ta-
ble S2). Thus more accurate keypoint detection would significantly improve the
performance of our full pipeline. However, cross-view evaluations given in Table
2 in the main paper demonstrate that these improvements may not translate to
better overall reconstruction.

Optimization-based multi-view pose estimation. We also perform ab-
lation experiments to investigate the effects of pose priors and joint and bone
limits on performance in the multi-view setting (Table S3). We find that PCK
increases as the pose prior and bone limits (but not pose limits) are removed.
IoU decreases significantly, indicating that these improvements may be the result
of unrealistic fits.

5 Comparison with other animal datasets

With the exception of Wah et al. [5] (CUB-200), datasets of animal shape and
pose are extremely limited. Although other datasets contain more images, more
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Table S2. Same-view evaluation of the single-view pipeline and ablations. In the upper
section, regression and optimization are performed using keypoint and mask predictions
and evaluated against ground truth. In the lower section, regression and optimization
are performed using keypoint and mask ground truth annotations and evaluated against
the same. Data are mean ± standard error. The upper section is from the main paper
and is reproduced here for comparison.

PCK@05 PCK@10 IoU

regression using predictions 0.104 ± 0.014 0.318 ± 0.027 0.483 ± 0.011
optimization using predictions 0.331 ± 0.025 0.575 ± 0.030 0.641 ± 0.014
reg. + opt. using predictions 0.364 ± 0.028 0.619 ± 0.031 0.671 ± 0.014

regression using ground truth 0.135 ± 0.016 0.357 ± 0.031 0.476 ± 0.013
optimization using ground truth 0.783 ± 0.020 0.933 ± 0.011 0.646 ± 0.012
reg. + opt. using ground truth 0.825 ± 0.021 0.967 ± 0.008 0.696 ± 0.011

Table S3. Comparison of PCK and IoU of projected mesh with ground truth keypoint
and mask annotations for the multi-view setting. PCK@05 and PCK@10 denote percent
correct keypoints within 5% and 10% of bounding box width, respectively. Results
presented here are fit without the silhouette term in the objective.

PCK@05 PCK@10 IoU

Full 0.357 0.623 0.541
−Eθ (pose prior) 0.417 0.677 0.532
−Ep (pose limits) 0.361 0.643 0.538
−Eb (bone limits) 0.383 0.657 0.466
Ekp only 0.511 0.724 0.413
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masks, or more keypoints, no other dataset contains both masks and keypoints
of multiple interacting subjects against a complex background (Tables S4 and
S5).

Table S4. Existing datasets for animal pose estimation. Our multi-view animal pose
dataset contains both masks and keypoints, has large variation in both relative view-
point (including subject depth) and lighting, and has multiple instances per image and
a complex background. Wah et al. [5] is the CUB-200 dataset.

Animal Max res. Images Viewpoint(s)

Wah et al. [5] Bird 500× 500 11,788 single (varying)
Breslav et al. [1] Moth 600× 800 800 single (behind)
Pereira et al. [4] Fly 192× 192 1500 single (above)
Graving et al. [2] Locust 160× 160 800 single (above)
Graving et al. [2] Zebra 160× 160 900 single (above)
Günel et al. [3] Fly 512× 256 11,063 7 cams (ground plane)
Ours Cowbird 1920× 1200 1000 8 cams (3D volume)

Table S5. Existing datasets for animal pose estimation (continued). “Inst. × key-
points” is the number of instances with keypoint labels × the number of keypoints
labeled per instance. “Mult. Inst.” is whether there are multiple subjects in any given
image.

Animal Masks Inst. × keypoints Mult. Inst. Background

Wah et al. [5] Bird 11,788 11, 788× 15 no complex
Breslav et al. [1] Moth 800 400× 4 no plain
Pereira et al. [4] Fly 0 1500× 32 no plain
Graving et al. [2] Locust 0 800× 35 yes plain
Graving et al. [2] Zebra 0 900× 9 yes complex
Günel et al. [3] Fly 0 11, 063× 19 no plain
Ours Cowbird 6355 1031× 12 yes complex

6 Multi-view cowbird and keypoint visibility

Over the 16 moments with keypoint annotations, we recovered 237 three-dimensional
bird instances. The visibility of these instances by the cameras in the aviary is
shown in Table S6. Mean reprojection error for all keypoints was 9.0 pixels and
ranged between 8.1 pixels for the bill tip to 9.5 pixels for the wing tips. The tail
tip was seen by the highest number of cameras on average across 3D instances
(3.4 views per bird) and the eyes were seen by the fewest cameras (2.0 views per
bird).
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Table S6. Visibility of 3D bird instances by cameras. The entry in each column is the
number (percent) of 3D bird instances that are visible from the corresponding number
of cameras. An annotation was labeled as unoccluded if all of the bird was visible and
no parts were hidden behind other birds or structures in the environment.

Visible from: 0 cams 1 cam 2 cams 3 cams 4 cams 5 cams

All annotations 0 (0.00) 7 (0.03) 16 (0.07) 62 (0.26) 123 (0.52) 29 (0.12)
Unoccluded annotations 29 (0.12) 61 (0.26) 78 (0.33) 42 (0.18) 27 (0.11) 0 (0.00)

Table S7. Reprojection error of keypoint annotations and visibility of anatomical
landmarks. “Num. cams” indicates the mean number of cameras that viewed each
keypoint across all 3D bird instances. On average, birds were viewed by 3.6 cameras
(and had 3.6 corresponding two-dimensional keypoint annotations).

Keypoint Reprojection error (pixels) Num. cams

Bill tip 8.1 2.9
Left eye 9.0 2.1
Right eye 8.7 2.0
Neck 8.4 2.6
Nape 9.5 3.0
Left wrist 9.3 2.5
Right wrist 9.4 2.5
Left wing tip 9.4 2.7
Right wing tip 9.7 2.7
Left foot 9.1 2.7
Right foot 8.8 2.6
Tail tip 8.5 3.4
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